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Modeling microstructural evolution using atomic density function and effective pair potentials
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We propose a numerical approach to the calculation of microstructural evolution in forms of the atomic
density evolution. The modulation of the atomic density wave is driven by the minimization of the free-energy

functional, which includes an effective pair potential term with softened core. As applications, we report
simulation results of solidification, grain growth, and annealing for a one-component system in two

dimensions.
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I. INTRODUCTION

The microstructure of materials is a key factor in describ-
ing the materials’ properties. Understanding the microstruc-
tural evolutions under different processing conditions are of
interests to scientists and engineers in order to obtain the
materials’ properties for different applications. Mathematical
modeling and computer simulations have also been studied
for different time scales in order to describe this nonequilib-
rium microstructure at the atomic scale. Phase field crystal
(PFC) is one of the recent models developed for simulating
the evolution of the periodic modulation of atomic density.
Elder et al.' have discussed PFC simulations and the dissi-
pative dynamics of order parameters, which is calculated by
the minimizing the free-energy functional. Compared with
the conventional phase field simulation, the free-energy func-
tional of PFC contains a higher order spacial gradient, which
supports the description of the sharp modulation of atomic
scale and the elastic-plastic properties of the materials from
the symmetric nature of the high order gradients. With this
model, crystal growth, elastic, and plastic deformations are
simulated in diffusive time scales.! In order to describe spe-
cific materials, the coefficients of the gradient and its higher
order terms are matched with elastic constants of the mate-
rials, and epitaxial growth, material hardness, phase recon-
struction, and crack propagation are tested based on the re-
lationship with the elastic properties of the materials.” As a
method of incorporating the elastic interaction with better
accuracy, the modified phase field crystal model is
suggested.? This model describes the structural evolution not
only on diffusive time scales (i.e., dislocation climbing,
grain-boundary motion*) but also comparably “fast” phe-
nomena, such as dislocation glide. Crystal structures, other
than a triangular structure in two dimensions or body cen-
tered cubic (BCC) structure in three dimensions, are also
studied with an external potential’® or with nonvanishing
terms in the free-energy functional.> As for the correlation
function, the PFC model uses the three coefficients of the
gradient terms which are a second-order series in Fourier
space (or up to higher order in recent works for the three
dimensional system, especially describing BCC structure®).
Recently the idea of the density-functional theory (DFT) is
adopted as correlation functions,”® and this provides the
links between the PFC method of diffusive time scale with
DFT providing more accurate information about the materi-
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als. As technical improvements of the PFC method,
renormalization-group (RG) theory is introduced in PFC cal-
culations for expediting the simulation speed and enlarging
the system size,!®!! and the semi-implicit calculation is pro-
posed for better accuracy.'?

The simplified formulation of the phase field crystal ap-
proach for one-component system with only a pair potential
contains three coefficients describing the pair correlations. It
is analyzed that these coefficients are Fourier coefficients of
the pair-correlation function and can be approximated using
the pair potential at high temperature.'> Khachaturyan and
co-workers, in their atomic density functional (ADF) theory,
removed the geometric restriction of the ADF Ising lattice
model'#1® and used a more complicated function in Fourier
space giving exact periodicity over larger distance in real
space.!3 Based on this approximation, instead of a pair-
correlation function, we introduce the interatomic pair poten-
tial, i.e., Lennard-Jones potential with modification in the
repulsive part. While the correlation function in PFC is based
on the atomic structure and its elastic properties or compress-
ibility, the pair potential that we use is based on the thermo-
dynamic properties. The major benefit of using such a pair
potential is not only that we include the thermodynamic
properties but also that we do not need to predefine the
atomic structure. The purpose of this work is introducing the
simple pair potential in simulating the atomic densities to test
the validity of the method in a qualitative way so that we can
expand the usage of various types of more complicated and
accurate interatomic potentials that are already available in
the literature for such calculations. In the following sections,
we give the theoretical description of the method and the
related equations and demonstrate the simulation results and
discuss.

II. THEORY

In this section, we describe the free-energy functional and
the time evolution model of atomic density. Here we use the
term ‘“‘atomic density” in representing the atomic number
density which is averaged over time. The free energy of a
system with density modulation of atom p(7) around the av-
erage density p is
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where 8p(r)=p(F)—p and p; is the liquid density.'” In Ref. 17
function W is the liquid state two-point correlation function.
In our model, this term corresponds to the thermodynamic
pairwise potential (by mean-field approximation, at high
temperature'?). The nonhomogeneous p(7) is formed in favor
of the effective pair potential term, i.e., [W(F—7#")dp(+")dr",
which prefers larger density around certain positions, while
the second term of Eq. (1) prefers a uniform atomic density
distribution and tends to suppress the increasing of the den-
sity modulation. The tradeoff between these two terms deter-
mines the p(7). The free-energy change by the evolution of
the density modulation is simplified using normalized den-
sity d(r)=8p(r)/p and expansion of the second term of the
right-hand side of Eq. (1)

A—F =L f f AW - 7)d(7)ddF’

+kpT f (%dz(r”) - écﬁ(?) + éd“(r”) - -)d?, )

where AF=F—-F, and Fy=F(p). In the next subsections, we
compare the free energies of different structures with ap-
proximated atomic modulation in one and two dimensions
and form the phase diagram.

A. Phase diagram
1. Stripe phase

In one-dimensional systems, possible structures are liquid
and stripes. If we approximate the density modulation of the
periodic state as one mode, i.e., d(x)=A;, cos(gx), the rela-
tive free energy of the stripe phase is

AF = gA%sf J cos(gx) W(X)cos[g(x + X)|dxdX

1 1
+ kBTf [EA%S cos*(gx) — EA?S cos*(gx)

1
+ —A?S cos4(qx)]dx. (3)
12
Then the free energy per unit length a is simplified as
AF 1 Vv 1
A%AkBT< _lp _A%A) ’ (4)
ap "4 kgT 8
where
—f W(x)cos(gx)dx. (5)

This V| term is after all the zeroth order term of Fourier
transform of the pair potential W. Minimizing F with respect
to A, gives
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and the minimum value of relative free-energy density is
AF,, 1 vip .\
s ve Y,
ap 2 kgT

Since A is real,
— =1 (8)

is the condition for the existence of this stripes phase.

In two dimensional, the density modulation of stripe
phase can be simplified as d(x,y)=A,, cos(gx). Relative
free-energy density AF/a’p, minimum value of AF/a’p and
A, giving that minimum, and the p—T relation for the real
amplitude of the density modulation have the same forms as
the one-dimensional case while V,, is taken place of V.
Here,

Voyy=— J f W(X,Y)cos(gX)dXdY . 9)

2. Triangular lattice

Triangular density modulation can be also simplified
as one-mode wave, ie., d(x,y)= AZ,[zcos(qu/\Z%)
—cos(gx)cos(gy/+3)]. Plugging this density profile into Eq.
(2) gives relative free energy per unit area

F_3 ( Vab L, 5A) (10)
R 1o ,
Zp 16 2kl kT 6 2 30
where
_2Vou+ Vo
2t — 3 )

Vzmz—ffW(X,Y)cos(qX)co< E)an’Y,
2qY

V2tb=—ij(X,Y)cos<—,§)dXdY (11)

Differentiating F by A,, gives extrema at

2 5V
Ay, =0, —<1t \/—19+20u>. (12)
5 ksT

At nonzero modulation A,, is real, so the following is the
necessary condition for the existence of the triangular struc-
ture:

PV 19

= 13
ksT ~— 20 (13)

Meanwhile, if
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FIG. 1. Phase diagram of single-component system in two di-
mensions. The analytic solutions for the solidus, liquidus, and
triangle/stripe lines are made by one-mode approximation as in Sec.
IT A and are compared with numerical calculations (points) as in
Sec. III.

19 pV.
Z Py (14)
20 kT

AF/a*p in Eq. (10) has local minima at A,=0 and A,
:%(1 +v=19+20pV,,/ kT). Therefore in this range, constant
phase (i.e., A,,=0) and triangular phase can coexist. The soli-
dus line can be obtained from Maxwell’s equal-area con-
struction or the equal tangent rule. From equal tangent rule,
the solidus line reads kzT= %ﬁvz,.

Figure 1 is the phase diagram of two-dimensional struc-
tures driven by one-mode approximations as described
above. The liquidus and solidus are made by the equations
kgT= %EVZ, and kzT=pV,,, respectively, and the numerical
calculations are presented as points. Here and throughout this
paper, as for the pair potential W(#,7") in Egs. (8), (9), and
(I1) and the numerical test, a modified Lennard-Jones pair
potential is used (see Fig. 2). The description about this po-
tential is found in Sec. III. The linearity of solidus and liqui-
dus lines also appears in experimental studies on the solid
state of inert atoms.” Even though we do not present the
results of either the microstructure or the free energy here,
they show the same simulation results not only on the liqui-
dus or solidus lines but also whenever the systems have the
same values of p/kgT. The numerical simulation method of
the temporal evolution of atomic density is described in the
following sections.

B. Dynamics

In this work, the microstructure evolution, described by
the atomic density evolution, is assumed to be dissipative
and driven by free-energy minimization. The kinetic equa-
tion for this conserved field p(7) is
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FIG. 2. Example of pair potential w(|[7—7'|) [Eq. (17)] used for
the two-point correlation function of Eq. (1). The potential pre-
sented in the figure is third order polynomial form where the coef-
ficients satisfy Eq. 18.

ap ( 5F)
—=VIMV —|+mn, 15
py o) 77 (15)
where M is the mobility matrix and % is the noise from
thermal fluctuation. In this work, mobility is considered as a
constant and thermal fluctuation is zero. From Egs. (1) and
(15), the kinetic equation of d(7,?) is derived as following:

‘9‘;—(@ = 62{ f po(x,x)d(x")dx'
-

+ T*(d(f) - %d()?)z + %d(fﬁ)} . (16)

Here the dimensionless variables are X=7/r;,, o=W/W,, T*
=kgT/ Wy, and 7=tMW,/r;, where Wo=W(r,).

III. COMPUTER SIMULATION

In this section, we show several applications of isothermal
microstructure evolutions of a single-component, two-
dimensional, periodic boundary system by solving the ki-
netic equation [i.e., Eq. (16)] of reduced atomic density
d(r,t). The differential equation is solved in real space and
the fully explicit Euler discretization method is used. All
Laplacians are calculated using the “spherical Laplacian” as
in Refs. 2 and 20 and the grid size used in this method is
Ax=0.2. The time step is automatically adjusted at each time
by the maximum value of the right-hand side of Eq. (16). For
the interatomic potential, we use Lennard-Jones potential
with a “softened” core and truncated outside

Ur2 =21 = wyy(r), 1 <r<rou
w(r) = 0, r= g (17)
win(r)» r= Tin»

where r is reduced distance with respect to r, where
aw/ dr|,0:0. As for the softened core potential w;,(r) we use
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a function which satisfies the conditions as below:

win(7iy) = wLJ(rin),

(‘)i,n(r)lr=rin = wLJ(r)|r=rin7 (18)
wi,n(r)|r:0 =0,
VisVaeuVop ... >0.

While the pair-correlation function from ADF and PFC
methods is periodic or oscillating at > 1 when it transforms
to real space, the pair potential in this work is maintained
with a nonoscillating tail. Figure 2 shows an example of w(r)
for the case of r;,=0.85 and r,,=4. This w(r) gives V|, Va,,
and V,, as 1.986, 1.376, and 2.679, respectively. For com-
puter simulations in this study, we use these r;, and r,, val-
ues for w(r). The modification of w(r), where r<r;, reduces
the “self-repulsion,” since p(r) and p(r+7"), especially
where |r'|<r;,, can be considered as the densities of the
same atom. The “softening” of the repulsive part of the in-
teratomic potential or pair-correlation function also has been
studied in DFT papers.'8!?

In the subsections following, we discuss the computer
simulation results of solidification, grain growth, and anneal-
ing. The simulation conditions are all the same as mentioned
above, except the initial conditions of each systems and T™.
As briefly mentioned previously, the simulation results are
the same when T/ p are the same, so we do not consider the
result with different r conditions.

A. Solidification in two dimensions

In this section, we present simulations of two-dimensional
solidification of single-component systems. Two types of
samples are prepared: one sample (sample A-I) is a liquid
phase with Gaussian noise of 0.14,, [see Eq. (12)]; the other
one (sample A-II) has the same liquid structure as the sample
A-I, but has nuclei of a triangular structure dispersed in the
liquid. Each nucleus has a diameter of about eight atoms, and
the initial amplitude of the density wave is set at A,,. In this
case the solidification is heterogeneous and occurs mainly at
the phase boundary. In both cases, T°=0.5 and p=0.2, and
these conditions are below the solidus in Fig. 1.

Figures 3(a) and 3(b) show the time evolution of density
and free-energy difference in terms of (|d|) and F*
=AF/a’p, respectively. Below the solidus the periodic den-
sity is favored, therefore the overall directions of evolution
are increased in density and decreased in free energy accord-
ingly. However, the evolution rate is different in time, show-
ing “S” curve. In early times, the {|d|) increase and F* de-
crease are slow. In this stage, in the liquid phase, sites with
large density induce the other sites around them (i.e., with
distance ry) and the induced modulation makes further den-
sity modulations. Even though the pair potential we use in
this work is not periodic, this chain reaction gives the peri-
odic nature to the “effective” potential as the density modu-
lation evolves. Yet the amplitude of the density modulation is
not large enough, this “selecting and fostering” the density
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FIG. 3. Density and free-energy evolutions in solidification rep-
resented as (|d|) on (a) and F* on (b), respectively. Open circles
indicate sample A-I, i.e., supercooled liquid with Gaussian noise;
solid circles indicate sample A-IL i.e., sample A-I with nuclei of
diameter of eight atoms. 7 is reduced time unit.

modulation is weak. Moreover, since the periodic density
wave has short-range order, as shown in Fig. 4(a), the en-
hancement by the resonance with the “neighbor atoms” is
weak. If there are heterogeneous sites, as in sample A-II,
however, the large gradient of free energy at the phase
boundary initiates and drives the density wave into the liquid
phase. Figures 5(a) and 5(c) show the planar density wave
around the nuclei. While the amplitude of the density wave
grows, the evolution rates of {|d|) and F* accelerate. As com-
pared at Fig. 3, this rapid evolution stage starts later in
sample A-I than in A-II, but the slope is larger in the former
case. Figures 4(a) and 5(c) correspond to the initiation of the
second stage of samples A-I and A-II, respectively. In both
cases, regardless of the size, there are small grains (i.e., pe-
riodic density wave with the amplitude of A,,). Note that

FIG. 4. Density (left three) and free-energy (right three) maps of
sample A-I of Sec. III A. Brighter shade corresponds to atomic
positions in the density maps and larger free energy in free-energy
map. The snapshots are taken at [(a) and (b)] 7=0.27, [(c) and (d)]
7=0.82, and [(e) and ()] 7=1.05, respectively. The free energy is
smoothed by averaging the free energy in r<<r,, range.
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FIG. 5. Density (left three) and free-energy (right three) maps of
sample A-II of Sec. III A. Brighter shade corresponds to atomic
positions in the density maps and larger free energy in free-energy
map. The snapshots are taken at [(a) and (b)] 7=0.15, [(c) and (d)]
7=0.27, and [(e) and (f)] 7=0.57, respectively.

while the effect of the second term of the right-hand side of
Eq. (1) is smaller than the first term, larger density enhances
more density modulations at the preferred sites. After the
density modulations reach to its A,, in most of the samples
[see Figs. 4(e) and 5(e)], the evolution rate decreases. In this
stage, grains meet the other grains, and long-range order is
achieved in long time by rearranging the density wave in
space. This corresponds to dislocation and/or grain-boundary
migration. Figure 6 shows the free-energy maps of samples
A-I (a) and A-II (b) at 7=2.5. Despite p and T* being the
same for the two samples, the microstructures are quite dif-
ferent in terms of the grain size and its distribution, grain-
boundary types, and dislocations trapped inside the grain. We
discuss further evolution in the section following.

B. Grain growth

Grain growth is made by the motions of grain boundaries
and their junctions. The driving force of those motions is a
function of grain-boundary energy, which is decided auto-

(a (b

FIG. 6. Free-energy maps of (a) sample A-I (initial liquid struc-
ture has no initial nuclei) and (b) A-II (started from liquid phase
with nuclei), respectively. Both simulation is performed under the
conditions of 79=0.5 and p=0.2, and the figure are taken at 7
=2.5. The free energy is smoothened by averaging the free energy
in r<ry, range.
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FIG. 7. Free-energy maps of polycrystalline samples with con-
ditions of 7=0.5 and p=0.2. (a) is a sample with 100 grains of
random size and crystallographic distributions and (b) is after 7
=265. (c)—(g) show snapshots of part of the sample; (c) grain adja-
cent to two grains (from left 7=40, 7=80, and 7=100); (d) grain
adjacent to four grains (from left 7=40, 7=100, and 7=200); (e)
two triple junctions (at 7=40) merging into one quadrijunction (at
7=80) and split into two triple junctions (at 7=100); (f) triple junc-
tions with one low angle and two high angle grain boundaries each
(from left 7=100, 7=200, and 7=260); (g) triple junctions with high
angle and coincident site lattice grain boundaries each (from left
7=100, 7=200, and 7=260).

matically from the pair potential “W” in this study. In this
section we present the phenomenological results of grain
growth, i.e., the motion of grain boundaries and their junc-
tions, and discuss the effect of the grain-boundary energies.

The initial structure is shown in Fig. 7(a). It is a polycrys-
talline sample which has 100 grains with random sizes and
crystallographic directions. The sample is kept under the
conditions of 7%=0.5 and p=0.2 until 7=260 [Fig. 7(b)]. As
shown in Fig. 7(a), the starting structure has many flat grain
boundaries. Since grain-boundary motion during grain
growth is controlled by the grain-boundary curvature, i.e.,
the lower the curvature, the lower the driving force, the driv-
ing force of the grain growth of our initial system mostly
comes from the grain-boundary junction. The grain-
boundary energy is a function of the crystallographic direc-
tions of the adjoining grains. In this study, we do not calcu-
late the grain-boundary energies but assume that they follow
what is known. That is, low angle grain boundary (up to
10°—-15°, shown as dotted line or row of dislocations in the
figure) has low energy with increasing value with angle,
while high angle grain boundary (shown as solid line in the
figure) has high energy unless it is a coincidence site lattice
boundary, i.e., %7 (21.8°), 213 (27.8°), or 219 (13.2°). With
this assumption, the equilibrium condition of grain bound-
aries at the triple junction is determined as v;/sin a;=const,
where v, is the energy of grain boundary and ¢; is its dihe-
dral angle at the junction. The grain boundaries of Fig. 7(a)
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are incidental and do not meet this equilibrium condition yet.
Therefore the triple junctions migrate toward the equilibrium
condition, which then causes the grain-boundary curvature
increase. The driving force to straighten the boundaries com-
petes with that of triple junction motion while the grain
boundaries and their junctions move together. Figures 7(c)
and 7(d) show the snapshots of motion of the grain bound-
aries and triple junction. In both cases grains shrink and dis-
appear, not by grain merging, but by grain boundary and
triple junction migration to merge. There also exist quadri-
junctions initially and in the middle of grain growth. Quadri-
junction is energetically unfavorable compared with two
triple junctions in general, so it tends to split into two triple
junctions. The direction it splits depends on the dihedral
angles at the junction and the energy of the grain boundary
newly formed from the splitting. It is also possible that two
triple junctions form a quadrijunction to split into two triple
junctions in different directions. Figure 7(e) shows the case
that two triple junctions, lying on high energy grain bound-
ary, merged temporarily into a quadrijunction and then split
into two triple junctions and a low energy grain boundary.
After these migrations, the local equilibrium of polycrystal-
line sample spreads out and the motion of dislocations and
their junction slows down. In Fig. 7(f), the triple junctions,
made by one low angle and two high angle grain boundaries
each, show a reasonable equilibrium angle. Figure 7(g)
shows two interesting triple junctions: the one on the left has
a high angle and two low angle grain boundaries and the
dihedral angle of the high angle boundary is close to 90°; the
other triple junction is composed of two low angles and one
coincidence site lattice boundary and all the dihedral angles
are close to 120°.

C. Annealing

In this section, the simulation results of annealing process
are presented. The starting polycrystal of the sample is com-
posed of 20 single-crystal grains of triangular structure with
four different directions (15°, 30°, 45°, and 60°, relatively)
and are treated in different temperature conditions 7°=0.5
(sample C-I), T°=0.55 (sample C-II), and T*=0.56 (sample
C-III) for comparison. When the treatment temperature is
above T°=0.57, the modulated density decreases its ampli-
tude and disappears within 7<<0.1. Figure 8 shows the snap-
shots of free energy indicating the microstructural evolution
with time: from the leftmost column, samples C-I, C-II, and
C-III, respectively; from the uppermost row, averaged free
energy at 7=5, 15, and 25, respectively, and the figures in the
lowermost row present atomic density of the boxed portion
of free-energy maps at 7=25. The conditions of samples C-II
and C-III are both below the liquidus and above the solidus,
but their microstructure evolves in different ways from each
other. But in sample C-II, according to the free-energy maps
of the microstructure [i.e., (b), (¢), (h), and (k) in Fig. 8],
neither the broadening of the grain boundary nor the liquid
phase is shown except at the grain-boundary junctions. The
microstructural evolution is faster and noticeable than
sample C-I within the same time range. The number of high
energy grain-boundary junctions, such as quadruple junc-
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FIG. 8. Free-energy maps of annealed polycrystalline samples.
From the leftmost column, 7%=0.5 (sample C-I), 7"=0.55 (sample
C-II), and T°=0.56 (sample C-III), respectively; from the top row,
averaged energy at 7=0.5, 7=1.5, and 7=2.5, respectively, and
atomic density (boxed area in energy maps at 7=2.5). The free
energy is smoothed by averaging the free energy in r<<r, range.
Higher F* is presented as brighter color, and the brightness of each
temperature conditions is adjusted to contrast the high energy sites
(i.e., dislocations and grain boundaries).

tions, decreases with time by separating into two triple junc-
tions. Comparing the microstructure of sample C-I, at higher
temperature (7°=0.55, sample C-II) the grain boundary re-
mained with curve depending on the types of the grain
boundaries at the junctions (see the snapshots of the middle
column in Fig. 8), while at the lower temperature (7°=0.5,
sample C-I) grain boundaries are straighter and sharper (see
the left column of Fig. 8). When we compare the atomic
density maps [i.e., Figs. 8(j)-8(1)], the modulation of the
atomic density at the defect sites is smeared out at higher
temperature. In sample C-III, the grain boundary, or where
the density modulation is not periodic, widens and the grains
become more round (see rightmost column in Fig. 8). The
smaller crystals disappear faster while the larger crystal
grows by consuming smaller crystals. This directional rear-
rangement occurs comparably fast by the grain-boundary
“melting” and “recrystallizing.” This is different from melt-
ing (above T%=0.57), where the all the grains dissolve and
disappear. The density of the bright parts in Figs. 8(c), 8(f),
and 8(i) is slightly lower than zero, which indicates that this
region is liquid. Note that p is the average density of the
triangular state of A-II and B-II, and the average density of
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liquid at equilibrium (not the constant density or supercooled
liquid) is lower than p=0.2. What is interesting is that the
grain growth occurs faster at higher temperature even though
the mobility is set to be constant (not a function of tempera-
ture). As exemplified in Eq. (12) for the triangular array, the
higher the temperature, the smaller the amplitude of the den-
sity wave. This corresponds to larger “overlapping of neigh-
boring atoms” which causes larger interactions between “at-
oms.” More investigation about the temperature dependence
of mobility will be made in other paper.

IV. CONCLUSION

A numerical approach using atomic density was presented
for the simulation of microstructural evolution of materials.
The temporal evolution of atomic density is driven by the
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free-energy relaxation, and in this paper the free-energy
functional is defined by introducing a pair potential with
softened core, satisfying the conditions for instability of
atomic density modulation. Based on the phase diagram
made by the approach suggested, numerical simulations,
such as solidification, grain growth, and annealing process,
were performed for one-component two-dimensional sys-
tems. Results tested in various conditions showed that atomic
density modulation described well both the periodic and non-
periodic natures of microstructure phenomenologically.
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